Heavy Quark Production and Modification in d+Au Collision in PHENIX

Nathan Grau

Augustana College For the PHENIX Collaboration

April 8, 2014

Outline

- Accessible Physics
- PHENIX Results on
 - ▶ Single Particles: e, μ , quarkonia
 - Pairs: ee, eμ
- Conclusions

Heavy Flavors in d+Au

Nagle, Frawley, Linden-Levy, and Wysocki

Phys. Rev. C84 044911 (2011)

- Charm and Bottom access
 - gluon nPDF shadowing and/or saturation
 - interactions with the cold nuclear medium – Cronin and energy loss
- Quarkonia additionally access
 - Nuclear breakup
 - Recombination

2008 RHIC d+Au Run

PHENIX Heavy Flavor Measurements

- $c, b \rightarrow \ell$ in North, South, central arms
- ▶ $J/\psi \rightarrow \ell^+\ell^-$ in North, South central arms
- $\psi' \rightarrow e^+e^-$, $\chi_c \rightarrow e^+e^-\gamma$, central arms
- $ightharpoonup car c, bar b o e^+e^-$ central arms
- $m car c o e^\pm \mu^\mp$ in central-muon arms

Heavy Flavor e at Midrapidity

$$R_{dA} = \frac{d + Au \text{ yield}}{\langle N_{coll} \rangle \times p + p \text{ yield}}$$

- Peripheral consistent with binary scaling.
- Central enhancement.
- Multiple scattering in heavy flavors more than light?

Phys. Rev. Lett. 109, 242301 (2012)

Further Evidence of Hydrodynamics in d+Au?

- Blast wave constrained to light flavors p_T spectrum.
- Substantial enhancement to electrons.

A. Sickles Phys. Lett. B731 51 (2014)

Heavy-Flavor μ R_{dAu}

arXiv:1310.1005

- ▶ PYTHIA $D \rightarrow \mu$ weighted with EPS09 b-dependent nPDFs
- ► Additional effects beyond anti-shadowing are necessary to explain backward (Au-going) rapidity

Heavy-Flavor R_{dAu} vs. Centrality

- ▶ Comparison μ and e R_{dAu}
- ► Top $1 < p_T < 3 \text{ GeV}/c$, Bottom $3 < p_T < 5 \text{ GeV}/c$
- Au-going rapidity μ enhanced like e
- b-dependence of data is stronger than EPS09s.

$J/\psi \langle p_T^2 \rangle$

Phys. Rev. C 87, 034904 (2013)

- ▶ J/ψ p_T distribution broadens.
- More broadening observed at backward (Au-going) rapidities.

$J/\psi R_{dAu}$

Phys. Rev. C 87, 034904 (2013)

- Centrality-integrated $R_{dA\mu}$ for different y ranges.
- ▶ Green d-going, Blue midrapidity, and Red - Au-going

$J/\psi R_{dAu}$

\triangleright Full p_T , y and centrality dependence

Midrapidity ψ' in d+Au

Phys. Rev. Lett. 111, 202301 (2013)

- $\psi' \to e^+e^-$ at mid rapidity in central (top) and peripheral (bottom) d+Au collisions.
- Curves
 - Quarkonia decays QED calculation smeared by PHENIX mass resolution
 - ▶ PYTHIA Drell-Yan
 - PYTHIA and MC@NLO open heavy flavor
- Grey curve sum with relative normalization of components a free parameter.

Midrapidity ψ' in d+Au

Phys. Rev. Lett. 111, 202301 (2013)

- ψ' substantially suppressed in most central collisions.
- ▶ More suppressed than J/ψ in most central.

Prompt Quarkonia R_{dAu}

Phys. Rev. Lett. 111, 202301 (2013)

- ► Measure $J/\psi \rightarrow \chi_c$ feed down in p+p and d+Au
 - $\chi_c R_{dAu}$ from inclusive J/ψ R_{dAu} .
- From ψ' and χ_c R_{dAu} extract prompt J/ψ R_{dAu} .

Dielectrons

Heavy-Flavor Dielectrons in p_T and and mass

- Subtract vector mesons and Drell-Yan from data as a function of mass and p_T.
- Line shape of $c\bar{c} \rightarrow ee$ (blue) and $b\bar{b} \rightarrow ee$ (red) from MC@NLO
- Fit to the data where normalization of each are free parameters.

Heavy-Flavor Dielectrons in p_T and and mass

- Bottom dominates at
 - $m_{ee} > 4 \text{ GeV}/c^2 \text{ for all } p_T$
 - $p_T > 2.5 \text{ GeV}/c$ for all m_{ee}
- Extract cross sections for both charm and bottom

$$\sigma_{cc}^{pp} = 704 \pm 47 ({\rm stat})$$
 $\pm 40 ({\rm model}) \, \mu {\rm b}$
 $\sigma_{bb}^{pp} = 4.29 \pm 0.39 ({\rm stat})$
 $\pm 0.11 ({\rm model}) \mu {\rm b}$

Heavy-Flavor $e-\mu$ Correlations

Phys. Rev. C89, 034915 (2014)

- e^{\pm} : $p_T > 0.5$ GeV, $|\eta| < 0.35$
- \blacktriangleright μ^{\pm} : $p_T > 1.0$ GeV, $1.4 < \eta < 2.1$, in deuteron direction
- Like-sign subtraction removes almost all light-hadron backgrounds.

Heavy-Flavor $e - \mu$ Correlations

Phys. Rev. C89, 034915 (2014)

- Comparison of p + p PYTHIA, POWHEG, and MC@NLO
- Peak dominated by gluon fusion, pedestal from flavor excitation and gluon splitting.
- Extracted a cross section by normalizing shape to p + p data uncertainties.

$$\sigma_{c\bar{c}} = 538 \pm 46 \text{(stat)} \pm 197 \text{(data syst)} \pm 174 \text{(model syst)} \ \mu\text{b}$$

Heavy-Flavor $e - \mu$ Correlations

Phys. Rev. C89, 034915 (2014)

- ► $\langle N_{coll} \rangle$ -scaled p + p compared to d + Au.
- ► Lack of defined peak in *d*+Au correlations.

Heavy-Flavor $e - \mu$ Correlations

Phys. Rev. C89, 034915 (2014)

 $ightharpoonup J_{dA}$ pair modification factor.

$$J_{dA} = \frac{\mathrm{d} + \mathrm{Au \ yield}}{\langle N_{coll} \rangle \times \mathrm{p} + \mathrm{p \ yield}}$$

▶ $x \sim 10^{-2}$ at $Q^2 = 10$ GeV², at the edge of the shadowing region.

RHIC 2015 p+A Run

Heavy Flavor Production: (F)VTX

- ► (F)VTX installed
- ▶ Right: $\mu^+\mu^-$ mass distribution in 510 GeV p+p
- ▶ Ahead: Forward μ , J/ ψ production in p+A, direct displaced D decay vertices at midrapidity

Constraining the Gluon nPDF: MPC-EX

- Silicon pre-shower in front of MPC (3.0 $< |\eta| < 3.8$) installation Summer 2014.
- Finely segmented silicon to vector photons from the vertex.
- ► Take advantage of the "golden channel" of QCD Compton scattering in *p*+A.

Constraining the Gluon nPDF: MPC-EX

- Separate γ from π^0 up to 80 GeV in energy.
- ▶ Color: expected measure 1σ inner, 90% confidence outer
- lacktriangle Hatched: EPS09 1σ inner and 90% confidence outer

N. Grau (Augustana)

Conclusions

- PHENIX has measured many heavy flavor and quarkonia observables that span different p_T , y, and x ranges.
- Enough to disentangle competing effects of gluon nPDF modifications, energy loss, and hydro?
- ▶ Future plans to extend the quality and quantity of the measurements.